SAMSKRUTI COLLEGE OF ENGINEERING & TECHNOLOGY

Lesson Plan(2017-18)

 ${f Subject}$: Power system operation and control Name of the faculty: K.Sridhar

Sl. No	Name of the Topic	No. of Classes required	Cumulative number of periods			
Unit – I						
1	Optimal operation of generators in Thermal Power Stations	1	1			
2	Heat rate – cost curve	1	2			
3	Incremental fuel and production costs	1	3			
4	Input – out put characteristics	1	4			
5	Optimum allocation with the losses neglected	2	6			
6	Problems solving	1	7			
7	Optimum generation allocation including effect of Transmission losses	2	9			
8	Loss coefficients	1	10			
9	General Transmission loss formula	2	12			
10	Problems solving	2	14			
	Unit – II		L			
11	Optimal scheduling of Hydrothermal system	2	16			
12	Hydroelectric power plant models	2	18			
13	Scheduling problems	1	19			
14	Short term hydrothermal scheduling problem	2	21			
	Unit – III					
15	First order turbine model	1	22			
16	Block diagram representation of steam turbines and approximate linear models	1	23			
17	Mathematical model of speed governing system –	2	25			

	derivation of small signal transfer function		
18	Description of simplified network model of a synchronous machine (classical model)	1	26
19	Description of swing equation (No derivation)	1	27
20	State space – II order mathematical model of Synchronous	1	28
20	machine machine		25
21	Fundamental characteristics on excitation system	1	29
22	Transfer function, Block diagram representation of IEEE type – I model and Problems solving	1	30
23	Necessity of keeping frequency constant	1	31
24	Definition of control area – single area control	1	32
25	Block diagram representation of an isolated power system	1	33
26	Steady state analysis	1	34
27	Dynamic response	2	36
28	Uncontrolled case & Problems solving	2	38
29	Load frequency control of 2 area system - un controlled case	3	41
30	Controlled case	3	44
31	Tie – line bias control & problems solving	2	46
32	Proportional plus integral control of single area and its block diagram representation	2	48
33	Steady state response	1	49
34	Load frequency control & economic dispatch control	2	51
35	Problems solving	2	53
	Unit – V		1
36	Overview of reactive power control – reactive compensation in Transmission systems	1	54
37	Advantages and disadvantages of different types of compensating equipment for transmission systems	1	55
38	Load compensation	1	56

39	Specific of load compensator	1	57	
40	Uncompensated and compensated Transmission lines	1	58	
41	Shunt and series compensation	2	60	